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Abstract

This chapter provides an introduction into the genetic control and analysis of behavioral
variation using powerful online resources. We introduce you to the new field of systems
genetics using “case studies” drawn from the world of behavioral genetics that exploit
populations of genetically diverse lines of mice. These lines differ very widely in patterns
of gene and protein expression in the brain and in patterns of behavior. In this chapter,
we address the following set of related questions: (1) Can we combinemassive genomic
data sets with large aggregates of precise quantitative data on behavior? (2) Can we
map causal relations between gene variants and behavioral differences? (3) Can
we simultaneously use these highly coherent data sets to understand more about
the underlying molecular and cellular basis of behavior?

1. INTRODUCTION

The theme of this chapter is how best to go about discovering and

testing for associations between differences in DNA sequence and behav-

ioral variation. In this particular instance, we introduce you to powerful bio-

informatic and genetic tools and techniques that are still “under the radar.”

International Review of Neurobiology, Volume 104 # 2012 Elsevier Inc.
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There is a good chance that you will be able to apply these new techniques

to specific problems, even while you read. If you have a computer with

an Internet connection, you can read and work along at the same time.

This short review and primer will take you on a tour of a Web site called

GeneNetwork that embeds many large data sets relevant to studies of behav-

ioral variation. GeneNetwork is an unusual site because it contains a coher-

ent “universe” of data as well as many powerful analytic tools. You could

think of this site as a massive collection of linked Excel spreadsheets and

macro commands—some spreadsheets with extensive behavioral data for

dozens to hundreds of cases (primarily mice and rats), some spreadsheets

with genotypes for the same cases, and some spreadsheets with data on gene

expression for dozens of brain regions (again for the same cases). The great

majority of behavioral data, along with simple “controlled vocabularies,”

have been extracted and curated by the GeneNetwork team from the pub-

lished literature. Data are usually hyperlinked to the most relevant refer-

ences, although you may also encounter some unpublished and some

prepublished data.

With some persistence, you will be able to (1) find appropriate behav-

ioral data, (2) test specific hypotheses about gene-to-phenotype relations

(“are mice with bigger brains or bigger hippocampii smarter in a water maze

task?”), or (3) generate de novo hypotheses using single concepts or single

genes as your seeds. Our only expectation is that you are interested in be-

havioral variation and in ways to exploit bioinformatic resources and

methods to dissect and (we hope) reassemble and model behavior. You

do not need to be a statistician or geneticist to use these tools.

In order to use GeneNetwork, we have to start with some ground rules

and assumptions. The first is that behavioral traits must vary significantly.

This is a chapter about behavioral variation with an equal emphasis on both

words. If a behavior is a “fixed action pattern” that is truly invariant across

some population of humans, mice, rats, or drosophila, then it is off-topic

from the point of view of this chapter and also off-topic for most genetics

analyses. Genetics is the study of variation—heritable or not. Genetics is

not the study of genes, although of course, it does include the study of genes.

Variation may be measured on a qualitative scale (green vs. red), a rank or

ordinal scale (high, medium, low), or a standard quantitative scale (linear,

logarithmic, z scores, etc.). The upshot is that when we talk about behavior

in this chapter, we really mean variation in behavior measured on a defined

scale. All of the behavioral data in GeneNetwork are about variation across

organism populations or families of individuals.
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The second and closely linked ground rule is to discard any tendency to-

ward what is sometimes called “typological thinking.” This happens daily at

conferences and in papers. Data on a set of 10 Sprague–Dawley juvenile male

rats become “the rat,” and data on a set of 10 C57BL/6J mice become “the

mouse.” Mouse, rat, and human are handy nouns, but these nouns cannot be

reified into single types without serious risk of error. All rats are white and

all mice are black is only a valid conclusion if we consider Sprague–Dawley

and C57BL/6J as representatives of their species. We can profit from some-

thing somewhat analogous to Heisenberg’s uncertainty principle to remind

us that “types” are fuzzy around the edges, and that there may be as many ex-

ceptions as there are rules. The reason to emphasize this point is that behavioral

traits are variably variable within and between species. This variation is an ex-

perimental treasure trove rather than a technical nuisance.

The third critical assumption is that differences in DNA sequence cause

differences in phenotypes, including behavior, not the other way around.

Thinking back more than a hundred years to the Lamarckian controversy

of the inheritance of acquired traits (Bowler, 1992), this would seem to

be a fact on solid ground, but everyone loves an argument. For the purpose

of this review, we ask you to accept the central dogma of behavioral genetics:

DNA variants produce RNA variants which in turn produce protein vari-

ants, and after many intervening steps (our collective black box), these DNA

variants contribute to variation in phenotypes. All behavioral traits are there-

fore built up using multiple gene products, complex molecular cascades, and

tiers of different types of cellular and environmental interactions. A fraction

of the variation in almost all behavioral traits can be “associated” back to

gene variants and chromosomal locations. This is what we mean when

we say that we have genetically “mapped a trait.” The word “association”

is unfortunately often used in this context, but association in this sense is

much more than just a bland statistical association. This is a causal and even

mechanistic association. When a study asserts that a particular genetic differ-

ence is associated with behavioral differences such as severity of choreiform

movements (Huntington disease), then this is an assertion that a cause has

been located in the genome. The statistical strength of that causal assertion

is measured using a p value (small values are better and mean that the null

hypothesis has been rejected) or a logarithm of the odds ratio—a so-called

LOD score (big values indicated strong likelihood that the null hypothesis

has been rejected and that some genetic causality has been discovered). We

may not yet know the specific cause or how this cause operates on behavior,

but at least we have an approximate chromosomal location for one or more
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causal sequence variants. This is why we call this type of genetic discovery a

“locus” or, in plural form, “loci.” Discard the idea that genetic associations

and loci are mere associations—they are assertions of genetic causality with

perhaps mysterious mechanistic causes. If a trait “maps” to a locus, then that

is where the DNA sequence variant (or variants) is fixed. They cannot en-

vironmentally or epigenetically wiggle off of the genome or to some other

distant part of the genome.

The fourth and final ground rule is that many gene differences and

many environmental factors contribute to variation in behavior and we

need a rule or general experimental paradigm to understand the connec-

tions. The rule is pretty simple: analysis first, integration and validation

second. The first analytic step usually involves reducing behavioral com-

plexity. This may seem like throwing the baby out with the bathwater,

but we have to start somewhere and we might as well start with simple

relations, simple models, and simple hypotheses, and then build up from

these atoms of behavior to more holistic networks. The next section intro-

duces a process known as genetic dissection, and in our specific case, we

will analyze the genetic basis of variation in learning and memory. This

is called “genetic” dissection for the simple reason that we are attempting

to dissect a set of DNA sequence variants and loci that contribute to var-

iation in the trait. The first results of a genetic dissection are lists of quan-

titative trait loci (QTLs) and candidate genes and variants. The goal is

certainly not to stop with QTLs. We would like to get back to the biology

of the behavior in question, and we can do so by exploiting our loci and

heritable variation to do this efficiently.

2. STEP 1: GENETIC DISSECTION OF BEHAVIORAL
VARIATION USING GENENETWORK

Wewill work through a simple example of how to use GeneNetwork

to analyze differences in a well-known learning and memory task called the

Morris water maze. We will use a set of nine related traits published by

Milhaud, Halley, and Lassalle (2002) that can all be accessed in Gene-

Network. Figure 6.1 provides you with a quick example of how to get these

data. If you want to follow along, link to http://www.genenetwork.org.

Change the default Type to read Phenotypes. Then type in a string of search

terms. In Fig. 6.1, the terms are water maze morris and milhaud, and they were

entered into theCombined search field. If you click on the Search button,

you will retrieve all nine traits (Fig. 6.2).
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The water maze task is used to test learning and memory performance,

but like many tests, the results are influenced bymotor coordination, sensory

capabilities, diurnal rhythm, responses to stress, etc. The actual measurement

units are the times in seconds or log seconds that it takes an animal to swim

from a variable point of entry in a small pool of water to a hidden “escape”

platform that is located in a fixed position in the pool. Animals have been

familiarized with the task in pretest trials, and they know in general that

it would be in their best interest to find the hidden platform. This is a test

of orientation, recall of the platform location, motivation, and speed of

swimming. You can see that our interpretation for this simple test is already

rife with anthropomorphisms about the thoughts, moods, and motivations

of rodents, but at least we have an idea about what we are measuring oper-

ationally and what we think the data might signify. The great thing about

having access to the data in GeneNetwork (Fig. 6.2) is that we can let these

numbers speak for themselves. Do the traits map strongly to any chromo-

somal location? If so, what fraction of the variance in the trait can be causally

linked to the location(s)? Does performance on this task, whatever it may be

Figure 6.1 The Search page on GeneNetwork being used to find published behavioral
data on the water maze task from a paper by Milhaud and colleagues.
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Figure 6.2 Behavioral data from a learning and memory task (water maze). Each description starts with the same general terms (“Central
nervous system, behavior. . .” and then provides more detail on the actual assay, cases, and units. Four of these nine traits (unchecked)
are times it takes a mouse in seconds to find a hidden platform in a small pool of water. Traits with a check mark are log transformed versions
of the same data. The top entry is the so-called final “probe” trial result that evaluates the strain's ability to recall platform location even after
the platform is removed. Animals swim over the expected location of the platform even in its absence.



measuring, covary with hippocampal size or body weight? To what extent

does the speed of finding the platform during the learning phase of the study

correspond to the persistence with which the strains search for the missing

platform?

To answer some of these questions, we can start by selecting a single trait

and clicking on its Record ID. All available data for this record is displayed in

the Trait Data and Analysis form. The trait measurement for each of the

28 genotypes of mice is shown in theReview and Edit Data section. All of

these genotypes or strains are members of the B-by-D or, simply, the BXD

family. The B-type mother is the darkly pigmented (BL¼black) C57BL/6J

inbred strain of mouse, whereas the D-type father is theDilute BeigeAgouti

or DBA/2J inbred strain. Every one of the progeny genotypes is itself a fully

inbred strain and each locus in these progeny is either D/D or B/B. If you

were to scan along a single chromosome in these progeny, you would notice

alternating long sections that are all B/B genotypes and then a switch to all

D/D genotypes. These long blocks of genotypes inherited from one parent

or the other are called haplotypes. Family members differ in much the same

way that human siblings differ. However, in this particular case, we have 26

large sets of identical twins in a single family, with the added quirk that iden-

tical twins can be either sex. The ability to resample each genotype a large

number of times (12 times in this case) means that experimentalists and stat-

isticians can evaluate and improve the technical precision of measurements

by resampling or censoring data. This unique feature also makes it practical

to systematically change the environment and assess how the same set of ge-

notypes respond alike or differently. Despite the fact that the study by

Milhaud is now over a decade old, we can combine these valuable behavioral

measures with complementary and newer data on hippocampal neuroanatomy

(Peirce, Chesler, Williams, & Lu, 2003), hippocampal electrophysiology

(Rietman, Sommeijer, Neuro-Bsik Mouse Phenomics Consortium,

Levelt, & Heimel, 2012), hippocampal gene expression (Overall et al., 2009),

and even adult neurogenesis in the dentate gyrus (Kempermann, Chesler,

Lu, Williams, & Gage, 2006), all using the same genotypes of mice.

To foreshadow the last section of this chapter, it is the ability to mix,

match, and combine phenotype data for populations of genotypes from

many labs that give the BXD family and other so-called genetic reference

populations such as the Collaborative Cross their remarkable power in

behavioral neuroscience. If your first question is “Won’t environmental dif-

ferences among studies disrupt the comparison?” then you are on the right

track. Environmental differences will tend to systematically lower correlations
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between studies (error terms are rarely shared) leading to a conservative bias

in correlation coefficients. It is also possible to rephrase this as an excellent

opportunity to test the impact of environmental factors on behavior. If two

studies conducted more than a decade apart using the same genotypes but dif-

ferent individuals raised in different environments agree closely as judged by a

simple correlation coefficient between measurements across all 28 genotypes,

then this tells you something important about that phenotype—namely, that it

is robust to numerous largely undefined environmental differences among lab-

oratories and cohorts. It also tells you that you are likely to be dealing with a

highly heritable trait that will be a good target for genetic dissection and QTL

mapping.

The initial step in genetic dissection is simple—we compute correlations

between variation in the phenotype (seconds to reach the platform, see

Fig. 6.3 or click on Basic Statistics, Bar Graph) across all of 26 or more

progeny BXD strains and their inheritance of either the B or D genotypes

(genotypes are coded as �1 and þ1). These animals are inbred homozy-

gotes, so they actually have either B/B or D/D genotypes, but we can keep

this simple and refer to B/B and D/D as the B and the D genotypes (or

alleles). There are just over 5 million known sequence differences between

B and D parents, but all we need is a representative subset of about 3000

of these polymorphic chromosomal markers to scan across the collection of

all 19 mouse autosomes (and the X chromosome) at a fairly tight spacing—

one marker every million base pairs of DNA or roughly one marker at a spac-

ing of every seven protein-coding genes. The resulting table of correlations

and associated p values is unwieldy, but we can convert these data into a

smoothed function of p values or the nearly equivalent LOD or likelihood

ratio scores (LRS) across the genome. To do this, expand the Mapping

Tools section and click on theCompute button under the Interval tab. This

gives rise toQTLmaps for thewhole genome (Fig. 6.4) and for a 20-megabase

(Mb) section of mouse chromosome (Chr) 1 (Fig. 6.5).

Let us pause here and summarize. This has already been a successful

genetic dissection. We have recomputed and confirmed using much better

new genotype data (Shifman et al., 2006) that Milhaud, Halley, and Lassalle

discovered a strong QTL that maps to distal Chr 1 for this particular trait and

for most of the related data for different days. The correlation between time

required to swim to the platform and the single best SNP marker

(rs8242852) is 0.78, with an R2 of just over�0.5. About 50% of the genetic

variability in the time that it takes members of this family to reach the plat-

form is caused by one or more sequence variants on Chr1 at 172–175 Mb.
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This is an important locus, and the underlying sequence variants need to be

defined more precisely.

While no one has revisited the water maze paradigm using the much-

enlarged BXD family—there are now about 150 members in this clan rather

than just 28—we do know that there are strong candidates in the aforemen-

tioned region (reviewed inMozhui et al., 2008). The best isAtp1a2 (Boughter

et al., 2012)—a sodium/potassium ion pump that contains over 300 noncod-

ing variants, some of which definitely modulate its expression in brain (higher

in strains that inherit the D allele, probably due to a variant that modulates

processing of the 30-untranslated region of the mRNA). The genetic and
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Figure 6.3 A bar chart of the time in seconds (�SEM) that different genotypes of mice
take to find the hidden platform on their second test trial in a Morris water maze task.
BXD5 (05 in the chart, far left) is fast and well directed to this platform with a time of
13.5�1.7 s. In contrast, BXD29 (29) is clearly a water-loving wanderer with a time of
48�8 s. Two key points here: (1) genotype is a significant predictor of time. The raw her-
itability estimates for these traits are in the neighborhood of 20–30%. (2) The two parental
strains have very similar values for this and almost all other traits, but the progeny BXD
strains are highly variable. This is because the task is influenced by multiple gene variants
that can have counterbalancing effects in parental strains but that segregate freely
among the progeny. Trait expression is not controlled by a single Mendelian-type gene
variant. This type of chart can be viewed for every trait in GeneNetwork by clicking on the
Record ID to navigate to the Trait Data and Analysis page. From this page, expand the
Basic Statistics section and select Bar Graph (by rank).
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Figure 6.4 Whole genomemap (or scan) for causal linkage between sequence differences and water maze latency (second training trial). The
x-axis represents chromosome number and megabase location—from Chr1 to the left to ChrX to the right. The blue function and the left
y-axis plot the likelihood ratio statistic (4.6 times the LOD score) of linkage. The pink and gray horizontal lines at values of about 18 and 11 are
approximate threshold values (significant and suggestive, respectively) used to establish that a peak is significant given the many thousands
of statistical tests involved in a whole genome scan.



Figure 6.5 Map of the genetic location on Chr1 that modulates performance on the water maze task. This is a zoomed version of Fig. 6.4 that
can be generated by clicking on the number at the top of the graph to get a Chr1-specific QTLmap and then by clicking on the red track at the
top of the Chr1map to zoom in on the targeted Mb region. The locations of individual genes (colored blocks along the top) are superimposed
above the LRS score in blue. The thin red line indicates the average effect of switching out a D allele for a B allele. In this case, this so-called
additive effect increases the time spent searching for the platform by about 7 s per allele (right y-axis). The orange hash on the x-axis high-
lights the numerical density of sequence differences between the two parental strains. Two large regions are highly diverse and two large
regions are very similar between parents.



functional linkage of this gene with central pattern generation is unequivocal

(Boughter et al., 2012; Onimaru, Ikeda, & Kawakami, 2007). In humans,

mutations in this gene cause migraines. It is possible, even likely, that the

linkage to the Atp1a2 region is really more a matter of swimming speed

and associated variability of the central pattern generator. Milhaud and

colleagues made this same point and showed that their final “probe” trial

trait for memory (numbers of crossing over the missing platform, see

GeneNetwork Trait 15169) does not map to Chr 1 but maps to Chr 2

near Adra1d (the alpha 1d adrenergic receptor at 131.4 Mb) and to Chr 5

in the region of Nos1 (neuronal nitric oxide synthase 1) between 116 and

126 Mb. Not nearly as much is known about candidate genes in these

two regions as is the case of distal Chr 1. However, Nos1 is a strong

candidate that is polymorphic in the BXD family and was independently

highlighted by Krebs et al. (2011) as a possible modulator of adult

hippocampal neurogenesis.

To really resolve questions about what aspects of these traits we are able

to map to the genome, it would be helpful to have explicit data on swim-

ming speeds for the BXD family. More and better data on spatial memory

tasks, such as a radial arm maze task, would also be extremely helpful.

Kempermann and Gage (2002) generated data on swimming speed (Trait

10814) that confirm the expectation that we are dealing with at least two

phenomena. They found that the correlation between swimming speed is

highest (r¼0.8) with the memory data for the training trials (e.g., 10414)

and lowest (r¼0.4) for the final memory trial (10814). This supports the idea

that time to reach the platform is partly associated with variation in the

motor pattern generator. Slow swimmers with the B allele also have a slow

licking rate and lower expression of Atp1a2. The second component repre-

sented by the memory “probe” trial is more closely tied to spatial memory

and maps to different chromosomes. This illustrates what we mean by the

process of genetic dissection of a behavioral trait—or a behavioral

complex—and this also highlights the need to let the numbers represent

the behaviors that are being measured. Laughlin, Grant, Williams, and

Jentsch (2011) used this same genetic method to effectively dissect reversal

learning in the BXD family using an operant protocol and were able to high-

light a very small number of candidate genes, one of which controls a key

aspect of behavioral flexibility.

In the next section, we will go beyond mapping and genetic dissection

to study patterns of correlation and covariation among behavioral traits and

other higher levels of brain organization.We can test which neuroanatomical,
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electrophysiological, or behavioral traits covary (or do not) with performance

on the water maze but with only modest success. The main limitation has to

do with getting the right balance between the complexity of a model of be-

havior and the sample size of the population needed to critically test that

model. While genetic dissection can work with a sample size of 20–30 (pro-

vided the data are of exemplary quality), a test of a simple model (Li et al.,

2006; Shipley, 2002) will require a sample size of a hundred or more

genotypes. This is why the major drive now in the field of behavioral

genetics is to achieve large sample sizes and also why the BXD family has

now been extended to over 150 genotypes. However, you can already

begin to use these methods with caution, recognizing that many tantalizing

trends and predictions may be false positive results.

3. STEP 2: COVARIATION AND NETWORK ANALYSIS OF
BEHAVIORAL VARIATION USING GENENETWORK

We will start our analysis of patterns of correlation and covariation by

combining a set of phenotypes to make a “consensus” or joint phenotype as

in Fig. 6.6. We do this by taking traits from theMilhaud paper (Fig. 6.2) and

adding them into the Trait Collection (this is done by checking the boxes to

the left in Fig. 6.2 and then selecting the Add function, top row). This

Figure 6.6 Correlation matrix of nine water maze (WMZ) traits from Milhaud et al.
(2002). Traits covary well, and it is therefore useful to statistically represent some of
these traits by a principal component (see bottom of figure). In this case, a synthetic
PC trait can explain over 75% of the total phenotypic variance among genotypes of
mice. Synthetic traits can be used like all other standard traits for mapping and behav-
ioral analysis.
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process can be used to add any BXD trait, including genotypes, into collec-

tions for joint analyses or network construction.

A common procedure is to study the correlation among traits and per-

haps to reduce the complexity of a set of related traits by computing one or

more principal components (PC) from a larger number of correlated traits.

To do either (compute correlations or PC data) you need to use theMatrix

function toward the top of the Trait Collection window. The result is a

correlationmatrix (Fig. 6.6) along with other statistical results (Scree and fac-

tor load plots, although not shown in the figure). Absolute values of the cor-

relations among the nine traits in Fig. 6.2 of Milhaud et al. are above 0.5.

You can click on any of these correlations to view the underlying scatterplot.

The strong covariation among traits justifies the process of producing con-

sensus PC measures of speed and/or persistence of this spatial memory task.

But, this process is unbalanced (eight related traits generated from training

trials and only one from the probe trial), so the point is to be careful not to

blend away unique biological signals in this process. Here, we should redo

the analysis and exclude the probe memory trial (Trait 15169) and possibly

just use the four logged data sets. The result is a synthetic PC-derived trait

that combines data for the four test learning trials.

We can now use this synthetic trait to compute correlations to the hun-

dreds of other CNS-relevant traits that have been generated for members of

the BXD family (e.g., Philip et al., 2010). The result of this kind of corre-

lation assembly is a network graph such as that in Fig. 6.7 (see the legend for a

list of key steps to make these graphs). Each node is a genetically variable

phenotype. The PC trait derived from the time it takes to reach the platform

is in the middle (blue), whereas the probe trial crossing data (WMZ Probe

Crossing) is above and to the right (green). Links between nodes represent

correlations (blue, green, and black dashed¼negative correlations, orange

and pink dashed¼positive correlations). In the original Web version of this

figure, all the links and nodes are hot, and clicking on them gets to either a

scatterplot or the set of data. We have already mentioned the correlation be-

tween “Lick Interval” and the time to reach the platform—both are prob-

ably being driven by a central pattern generator controlled by Atp1a2—and

you can see this link explicitly. The Atp1a2 node (blue) represents variation

in whole brain expression in the same BXD strains. The node for Adra1d

(upper left) represents variable expression of this adrenergic receptor in hip-

pocampus. The other phenotypes in this graph include neuroanatomical

traits (e.g., Striatal Volume, MSACC¼midsagittal area of the corpus cal-

losum), key metabolites and metals (plasma deoxycorticosterone levels,
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copper levels and zinc levels in hippocampus), and responses to ethanol

(ethanol/EtOH ataxia and EtOHwithdrawal seizures) and high atmospheric

pressure (high-pressure seizure). The challenge now is to (1) determine how

much of this network is reliable and biologically meaningful and (2) under-

stand the molecular, cellular, and environmental processes and mechanisms

that produce these patterns of correlation—the collective “black box”

located between genes and behavior. Each of the nodes in this network

graph can also be studied using the genetic methods that we applied to

the water maze data sets, with the hope of uncovering other common can-

didates that genetically and mechanistically bind apparently disparate traits

such as lick rate and the time it takes to swim to a target platform.

Figure 6.7 Covariance network of phenotypes related to water maze (WMZ) Probe
Crossings. This graph was generated in GeneNetwork by computing Pearson product
moment correlations among all members of a set of highly variable anatomical, behav-
ioral, neurochemical, and gene expression data collected for the same types of mice. As
long as these traits are collected from the same Group in GeneNetwork—in this case,
BXD—they can be added to a Trait Collection. The type of graph shown here is gen-
erated by selecting traits from the Trait Collection and then using the Graph option.
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Now that you are familiar with network construction and the types of

biological questions that can be addressed, we provide a detailed example

of a complete network analysis.We examine the impact of a strongmutation

in a key enzyme on brain network function. For a more detailed overview of

GeneNetwork, please see Chesler, Lu, Wang, Williams, and Manly (2004)

and Chesler et al. (2005). For detailed network analyses using this Web re-

source, please see Li et al. (2010)—an example of traits linked to expression

of the Comt gene—and Mulligan et al. (2012)—an example of the genetic

regulation of GABA type A receptors.

4. STEP 3: DISSECTING THE BEHAVIORAL IMPACT
OF SEQUENCE VARIANTS USING GENENETWORK

Degradation of key neurotransmitters—including dopamine and nor-

epinephrine—is mediated in part by the enzyme Comt. A mutation in the

30-UTR of the strain with the B haplotype leads to the production of a short

30-UTR and high protein levels compared to strains without the mutation,

including all strains that inherit theD haplotype (Li et al., 2010). Because the

Comt gene is polymorphic between the B- and D-type strains, the mutation

is segregating in the BXD family. This means that we can use the accumu-

lated wealth of gene expression data, genotypes, and CNS-related pheno-

types to explore the impact of this mutation on global brain network

function. A remarkable feature is that we can do this without generating

any new data—we can strategically and genetically mine data that go back

40 years. In this case, we ask the following questions: (1) “Which genes/

transcripts map to the genetic mutation in Comt?” and (2) “Which behav-

ioral and neurochemical phenotypes map to the genetic mutation inComt?”

We can answer these questions using data and tools in GeneNetwork

along with a little background information. The Comt gene is located on

Chr16 at approximately 18.4 Mb. We can use options on the Select and

Search page to identify a good marker for that region of the genome.

The marker (usually a SNP) allows us to identify those mRNA expression

traits and phenotypes that have higher or lower expression associated with

the inheritance of that section of DNA from one of the parental types. In this

case, the analysis is especially straightforward because there are only a few

variants located near the Comt gene, and Comt is the only candidate within

a 2-Mb genomic interval.

From the home page changeType toGenotypes. Enter the following text

into theGet Any box: POSITION¼ (chr16 17 19). This search will find all
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markers that are located on Chr16 between 17 and 19 Mb. For this example,

we select marker rs4165069. Once you have clicked on the link for this

marker, you will be directed to the Trait Data and Analysis page where

you have many options to explore in great detail the data type you have

selected, in this case, our Comt gene marker. Expand the section for Calcu-

late Correlations. Here, you can retrieve correlations between the marker

and any other data set generated using the BXD family. ForDatabase, select

BXDPublished Phenotypes. You can choose the number of top correlations to

return as well as the type of correlation computed—Pearson or Spearman

rank correlation, the latter being less sensitive to outliers. For this example,

we will use the Pearson correlation. The top correlation between the marker

and each BXD phenotype is returned as in Fig. 6.8.

We know from the Introduction of this chapter that the LOD score or

the nearly equivalent LRS score (LRS¼ LOD� 4.6) is a statistical summary

of the strength of the linkage between inheritance of parental alleles at a spe-

cific genomic region and expression of a trait. As expected, very high marker

correlations often have a maximum LRS value near the position of the

marker (the location of the Comt gene, shown in the table as Max LRS

Location Chr and Mb). As values decrease, we will eventually reach a

threshold that is no longer significant. To visualize the mapping of the phe-

notypes to the location of the Comt mutation select the top 10 phenotypes.

(Note: see Fig. 6.8; do not include traits that have N cases less than 12 be-

cause small sample size can lead to spurious mapping results or cannot be

mapped at all (N<9).) Next, select the Heat Map option to visualize

the mapping of these traits. The results are shown in Fig. 6.9. The top 10

correlates of our marker map precisely to Comt with a suggestive or signif-

icant LRS value (Fig. 6.9). This set of phenotypes is “downstream” of the

mutation in Comt. In other words, fluctuating levels of Comt mRNA and

protein due to the 30-UTR mutation cause variation in the expression of

these phenotypes.

We have illustrated how to locate downstream phenotypes of a gene

variant using marker analysis in GeneNetwork, but there is an even more

direct way to answer the same question. It is possible to query data sets in

GeneNetwork from the Select and Search page using advanced options

to locate the highest trait LRS values for any genomic interval, in this case,

the region within 2 Mb ofComt. (Note: You can explore this and other sea-

rch options further by clicking the Advanced Search button and reading

the section Advanced Searching and General Advice.) From the home

page, change Type to Hippocampus mRNA and Data Set to Hippocampus
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Figure 6.8 Top correlations between Comt marker rs4165069 and BXD strain phenotypes in GeneNetwork. Check marked traits are suitable
for mapping studies as they have a sufficiently large sample size—generally at least 12, but more is always better.



Consortium M430v2 ( Jun06) RMA. Enter the following text into the Com-

bined search box: MEAN¼ (8 16) LRS¼ (9.6 999 Chr16 16 19) trans-

LRS¼ (9.6 999 5). Using a simple query, we retrieve all the

genes/transcripts from this particular hippocampal data set that have a mean

expression between 8 and 16 [(MEAN¼8 16)] with a maximum LRS value

between 9.6 and 999 [transLRS¼ (9.6 999 5)] located near the mutation in

Comt [LRS¼ (9.6 999 Chr16 16 19)]. This set of hippocampal gen-

es/transcripts—including Apba1, Cmip, and Stau1—is “downstream” of the

mutation in Comt.

Using advanced search options in GeneNetwork, it is possible to quickly

mine many different types of data to create gene sets and networks to address

specific biological questions.We can combine all of these results (both the be-

havioral and neurochemical phenotypes and themRNAmicrotraits) as shown

in Fig. 6.10. This set represents a key part of the Comt functional brain net-

work. While we do not know the biological mechanisms or the number of

interveningmolecular processes between cause and effect, we have established

an almost unequivocal causal link between Comt expression level, other

Figure 6.9 Multiple trait mapping in GeneNetwork. The Heat Map feature allows for a
quick comparison of the genetic regulation of many traits. The Heat Map plots the LRS
or LOD values for each allele as a color (blue for the B-type parent and red for the D-type
parent) with increasing intensity indicating stronger associations and lower p values.
These values are displayed for each selected trait (x-axis) by chromosomal position
(y-axis).
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mRNA expression levels, and higher order phenotypes. We can now use this

highly relevant biological network of causal relationships to address the bio-

logical role of Comt in brain and to generate new hypotheses. As might be

expected, given its role in the degradation of catecholamine neurotransmit-

ters, alteration in the level of the COMT enzyme has an effect on GABAergic

and dopaminergic neurotransmitter systems. Binding affinity of dopamine re-

ceptors DRD1 and DRD2 (a measure of receptor density), haloperidol (a do-

pamine receptor antagonist) response, and chlordiazepoxide (an allosteric

modulator of GABA type A receptors) response maps to the location of
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Figure 6.10 Comt brain network. The mutation in Comt, actually the insertion of a B2
SINE element in the 30-UTR of C57BL/6J (blue Comt gene in figure center), causes the
production of a shorter mRNA in the B-type parental strain. GeneNetwork tools and
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theComtmutation on Chr 16. The expression of genes involved in addiction

(Mao, Ptprd, and Slit3) and psychiatric illness (Maoa,Myt1l, Slc12a6, and Slit3)

are also controlled by variation in Comt expression. Human mutations in the

COMT gene have been associated with schizophrenia, anorexia nervosa,

bipolar disorder, anxiety, and substance abuse (Hosak, 2007). Our functional

brain network identifies new gene targets and neurotransmitter systems that

evidently interact withComt in similar biological processes and may influence

susceptibility to these complex human disorders.

5. SUMMARY

Having completed this chapter, you should now be able to use the

resources available on GeneNetwork to explore variation in single genes and

behavioral phenotypes.We also hope that you have gained expertise in assem-

bling multilevel causal networks and in generating your own synthetic traits

to address and test biological questions and hypotheses. We realize that there

is still a fairly steep learning curve on some of the work we have reviewed,

but thegoodnews is that the resources andonline tools aregettingprogressively

faster andmore streamlined.Theonlinedocumentation (see all of theHelp and

Reference files on GeneNetwork) will also reduce the energy barrier of

adopting powerful systems genetics and systems behavioral approaches. Web

services such as GeneNetwork and its companions—GeneWeaver (Baker,

Jay, Bubier, Langston, & Chesler, 2012), WebGestalt (Zhang, Kirov, &

Snoddy, 2005), DAVID (Huang, Sherman, & Lempicki, 2009a, 2009b), and

the Allen Brain Atlas (Lein et al., 2007) (described in the Chapter 7)—can

now be used as virtual and free laboratories to test-specific biological

hypothesis, or they can be used to generate new ideas ab initio.
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